[bookmark: _GoBack]Some View of Description Logic

Li Ma
mq2828@126.com
CLLC of Peking University

Abstract

In this article five parts are addressed. Part one, an introduction to the description logics. Part two, the basic description language . Part three, the extended description logics. This part covers the extension of the both classically and non-classically. Part four, the complexity of reasoning. We mainly give attention to the AND-branching and OR-branching algorithms, and show some important results in this topic. Part five, the conclusion and future focus.

1. Introduction to the description logic

1.1 A simple history of DLS.
Knowledge Representation is the field of Artificial Intelligence that focuses on the design of formalisms that are both epistemologically and computationally adequate for expressing knowledge about a particular domain. One of the main lines of investigation has been concerned with the principle that knowledge should be represented by characterizing classes of objects and the relationships between them. The organization of the classes used to describe a domain of interest is based on a hierarchical structure, which not only provides an effective reasoning and compact representation of information, but also allows the relevant reasoning tasks to be performed in a computationally effective way.
	The above principle drove the development of the first frame-based systems and semantic networks in the 1970s. However, these systems were in general not formally defined and the associated reasoning tools were strongly dependent on the implementation strategies. A fundamental step towards a logic-based characterization of required formalisms was accomplished through the work on the Kl-One system, which collected many of the ideas stemming from earlier semantic networks and frame-based systems, and provided a logical basis for interpreting objects, classes (or concepts), and relationships (or links, roles) between them. The first goal of such a logical reconstruction was the precise characterization of the set of constructs used to build class and link expressions. The second goal was to provide reasoning procedures that are sound and complete with respect to the semantics. The article “The tractability of subsumption in Frame-based Description Languages ” by Ron Brachman and Hector Levesque, presented at AAAI 1984, addressing the tradeoff between the expressiveness of KL-One-like language and the computational complexity of reasoning, is usually regarded as the origin of research on Description Logics.

1.2 Description language and knowledge bases.
A knowledge base (KB) comprises two components, the Tbox and ABox. The TBox introduces the terminology, i.e., the vocabulary of an application domain, while the ABox contains assertions about named individuals in terms of this vocabulary. 	The vocabulary consists of concepts, which denote sets of individuals, and roles, which denote binary relationships between individuals. In addition to atomic concepts and roles (concept and role names), all DL systems allow their users to build complex descriptions of concepts and roles. The TBox can be used to assign names to complex descriptions. The language for building descriptions is a characteristic of each DL system, and different systems are distinguished by their description languages. The description language has a model-theoretic semantics. Thus, statements in the TBox and in the ABox can be identified with formulae in first-order logic or, in some cases, a slight extension of it.
	TBox. The basic form of declaration in a TBox is a concept definition, that is, the definition of a new concept in terms of other previously defined concepts. For example, a woman can be defined as a female person by writing this declaration :
Woman Person Female.
Such a declaration is usually interpreted as a logical equivalence, which amounts to providing both sufficient and necessary conditions for classifying an individual as a woman. This form of definition is much stronger than the ones used in other kinds of knowledge, which typically impose only necessary conditions; the strength of this kind of declaration is usually considered a characteristic feature of DL knowledge bases. In DL knowledge bases, therefore, a terminology is constituted by a set of concept definitions of the above form.
	ABox. The ABox contains extensional knowledge about the domain of interest, that is, assertions about individuals, usually called membership assertions. For example,
Female Person (Mary)
states that the individual Mary is a female person. Given the above definition of woman, one can derive from this assertion that Mary is an instance of the concept Woman. Similarly,
hasChild (Bush, Bush. W)
specifies that Bush has Bush. W as a child. Assertions of the first kind are also called concept assertions, while assertions of the second kind are also called role assertions.
	As illustrated by these examples, in the Abox one can typically specify knowledge in the form of concept assertions and role assertions. In concept assertions general concept expressions are typically allowed, while role assertions, where the role is not a primitive role but a role expression, are typically not allowed, being treated in the case of very expressive languages only.

2. The basic description language .
	Concept descriptions in are formed according to the following syntax rule:
 , | (atomic concept)
 | (universal concept)
 | (bottom concept)
 | (atomic negation)
. | (intersection)
. | (limited existential quantification)
Note that, in , negation can only be applied to atomic concepts, and the top concept is allowed in the scope of an existential quantification over a role. For historical reasons, the sublanguage of obtained by disallowing atomic negation is called and the sublanguage of obtained by disallowing limited existential quantification is called 0 .
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]To give examples of what can be expressed in , we suppose that Person and Female are atomic concepts. Then Person Female and Person Female are -concepts describing, intuitively, those persons that are female, and those that are not female. If, in addition, we suppose that hasChild is an atomic role, we can form the concepts Person hasChild. and Person hasChild.Female, denoting those persons that have a child, and those persons all of whose children are female. Using the bottom concept, we can also describe those persons without a child by the concept Person hasChild..
In order to define a formal semantics of -concepts, we consider interpretations that consist of a non-empty set (the domain of the interpretation) and an interpretation function, which assigns to every atomic concept A a set A and to every atomic role R a binary relation R . The interpretation function is extended to concept descriptions by the following inductive definitions:
 =
 =
() = \ A
() =
(.) = { | (,) }
 (.) = { | (,) }

We say that two concepts , are equivalent, and write , if = for all interpretations . For instance, going back to the definition of the semantics of concepts, one easily verifies that hasChild.Female hasChild.Student and hasChild.(Female Student) are equivalent.

3. The extended description logics.
For many applications, the expressive power of is not sufficient to express the relevant terminological knowledge of the application domain. Some of the most important extensions of are obtained by concept and role constructs. And such extensions are called classical in the sense that their semantics can easily defined within the model-theoretic framework of . But the classical extension can only be used to represent time-independent, objective, and certain knowledge. In addition, they do not allow “built-in data structures” like numerical domains.
The non-classical language extensions try to overcome some of these deficiencies. The extension by concrete domains allows us to integrate numerical and other domains in a schematic way into description logics. The extension of DLs by modal operators allows for the representation of time-dependent and subjective knowledge (e.g., knowledge about knowledge and belief of intelligent agents). DLs that can explicitly represent time have also been introduced outside the modal framework. The extension by epistemic operators provides a model-theoretic semantics for rules, it can be used to impose “local” closed world assumptions, and to integrate integrity constraints into DLs. In order to represent vague and uncertain knowledge, different approaches based on probabilistic, possibilistic, and fuzzy logics have been proposed. Finally, non-monotonic Description Logics are obtained by the integration of defaults into DLs.

3.1 Classical extensions
We obtain more expressive languages if we add further constructors to. The
union of concepts (indicated by the letter) is written as , and interpreted
as
() =
Full existential quantification (indicated by the letter) is written as ., and
interpreted as
(.) = { | (,) b}
Note that . differs from ., in that arbitrary concepts are allowed to occur
in the scope of the existential quantifier.
Number restrictions (indicated by the letter) are written as (at-least
restriction) and as (at-most restriction), where ranges over the nonnegative
integers. They are interpreted as
 () = { |{| (,)}| }
and
 () = { |{| (,)}| }

respectively, where “| |” denotes the cardinality of a set. From a semantic viewpoint, the coding of numbers in number restrictions is immaterial. However, for the complexity analysis of inferences it can matter whether a number is represented
in binary (or decimal) notation or by a string of length , since binary (decimal)
notation allows for a more compact representation.
The negation of arbitrary concepts (indicated by the letter , for “complement”)
is written as , and interpreted as
 () = \

With the additional constructors, we can, for example, describe those persons
that have either not more than one child or at least three children, one of which is
female:
Person (1 hasChild (3 hasChild hasChild. Female)).
Extending by any subset of the above constructors yields a particular -language. We name each -language by a string of the form
 [][][][];
where a letter in the name stands for the presence of the corresponding constructor.
For instance, is the extension of by full existential quantification and
number restrictions (see the appendix on DL terminology for how to extend this
naming scheme to more expressive DLs).
From the semantic point of view, not all these languages are distinct, however.
The semantics enforces the equivalences () and . ..
Hence, union and full existential quantification can be expressed using negation.
Conversely, the combination of union and full existential quantification gives us
the possibility to express negation of concepts. Therefore, we assume w.l.o.g. that union and full existential quantification are available in every language that contains negation, and vice versa. It follows that (modulo the equivalences mentioned above), all -languages can be written using the letters , , only. It is not hard to see that the eight languages obtained this way are indeed pairwise non-equivalent. In the sequel, we shall not distinguish between an AL-language with negation and its counterpart that has union and full existential quantification instead. In the same
vein, we shall use the letter instead of the letters in language names. For
instance, we shall write instead of and instead of .
3.2 Classical extensions
3.2.1 Certain domain
	We formalize the notion of a concrete domain as follows.
Definition 3.2.1 A concrete domain consists of a set , the domain of , and
a set pred(), the predicate names of . Each predicate name pred() is
associated with an arity , and an -ary predicate ().
Let us illustrate this definition by examples of interesting concrete domains. Let us
start with some numerical ones:
� The concrete domain , which we have employed in our introductory example,
has the set of all nonnegative integers as its domain, and pred() consists of
the binary predicate names <, , , > as well as the unary predicate names <,
, , > for , which are interpreted by predicates on in the obvious
way.
� The concrete domain has the set of all real numbers as its domain, and the
predicates of are given by formulae that are built by first-order means (i.e.,
by using Boolean connectives and quantifiers) from equalities and inequalities
between integer polynomials in several indeterminates. For example, + 2 = is an equality between the polynomials (,) = + 2 and () = ; and > is an inequality between very simple polynomials. From these equalities and inequalities one can for instance build the formulae (+ 2 = y) and (+ 2 = y) (>). The first formula yields a predicate name of arity 2
(since it has two free variables), and it is easy to see that the associated predicate is
{(,) | and are real numbers and }. Consequently, the predicate associated to the second formula is{(,) | and are real numbers and } =.
3.3 Modal extensions
Although the DLs discussed so far provide a wide choice of constructors, usually they
are intended to represent only static knowledge and are not able to express various dynamic aspects such as time-dependence, beliefs of different agents, obligations, etc. For example, in every standard description language we can define a concept “good car” as, say, a car with an air-conditioner:
GoodCar Car part. Airconditioner. (3.1)
However, we have no means to represent the subtler knowledge that only John believes (3.1) to be the case, while Mary does not think so:
[John believes](3.1) [Mary believes](3:1)
Nor can we express the fact that (3.1) holds now, but in the future the notion of a
good car may change (since, for instance, all cars will have air conditioners):
(3:1) eventually(3:1)
A way to bridge this gap seems quite clear and will be discussed in this and the
next section: one can simply combine a DL with a suitable modal language treating
belief, temporal, deontic or some other intensional operators. However, there are
a number of parameters that determine the design of a modal extension of a given
DL.
(I) First, modal operators can be applied to different kinds of well-formed expressions of the DL. One may apply them only to conceptual and assertional axioms thereby forming new axioms of the form:
[John believes](GoodCar Car part. Airconditioner),
[Mary believes] eventually(Rich (JOHN))
Modal operators may also be applied to concepts in order to form new ones:
[John believes]expensive
i.e., the concept of all objects John believes to be expensive, or
HumanBeing child.[Mary believes] eventuallyGoodStudent
i.e., the concept of all human beings with a child that Mary believes to be eventually
a good student. By allowing applications of modal operators to both concepts and
axioms we obtain expressions of the form
[John believes](GoodCar [Mary believes]GoodCar)
i.e., John believes that a car is good if and only if Mary thinks so.
Finally, one can supplement the options above with modal operators applicable
to roles. For example, using the temporal operator [always] (in future) and the role
loves, we can form the new role [always]loves (which is understood as a relation
between objects x and y that holds if and only if will always love) to say
([always]loves.Woman)(JOHN)
i.e., John will always love the very same woman (but perhaps not only her), which
is not the same as ([always]loves.Woman)(JOHN).
(II) All these languages are interpreted with the help of the possible worlds
semantics, in which the accessibility relations between worlds (or points in time, . . .)
treat the modal operators, and the worlds themselves are DL interpretations.
The properties of the modal operators are determined by the conditions we impose on the corresponding accessibility relations. For example, by imposing no condition at all we obtain what is known as the minimal normal modal logic K—although of definite theoretical interest, it does not have the properties required to model operators like [agent A knows], eventually, etc. In the temporal case,
depending on the application domain we may assume time to be linear and dis-
crete (for example, the usual strict ordering of the natural numbers), or branch-
ing, or dense, etc. (see [Gabbay et al., 1994; van Benthem, 1996]). Moreover,
we have the possibility to work with intervals instead of points in time. In epistemic logic, transitivity of the accessibility relation for agent A’s knowledge means what is called positive introspection (A knows what she knows), euclideannes corresponds to negative introspection (A knows what she does not know), and reflexivity means that everything known by A is true. For more information and further references consult [Fagin et al., 1995; Meyer and van der Hoek, 1995].
(III) When connecting worlds—that is, ordinary interpretations of the pure de-
scription language—by accessibility relations, we are facing the problem of connect-
ing their objects. Depending on the particular application, we may assume worlds
to have arbitrary domains (the varying domain assumption), or we may assume
that the domain of a world accessible from a world w contains the domain of
(the expanding domain assumption), or that all the worlds share the same domain
(the constant domain assumption); see [van Benthem, 1996] for a discussion in the
context of first-order temporal logic. Consider, for instance, the following axioms:
[agent A knows](Unicorn)
([agent A knows]Unicorn)
The former means that agent A does not know that unicorns do not exist, while
according to the latter, for every existing object, A knows that it is not a unicorn.
Such a situation can be modeled under the expanding domain assumption, but these
two formulas cannot be simultaneously satisfied in a model with constant domains.
(IV) Finally, one should take into account the difference between global (or rigid) and local (or flexible) symbols. In our context, the former are the symbols which have the same extension in every world in the model under consideration, while the latter are those whose interpretation is not fixed. Again the choice between these depends on the application domain: if the knowledge base is talking about employees of a company then the name John Smith should probably denote the same person no matter what world we consider, while President of the company may refer to different persons in different worlds. For a more detailed discussion consult, e.g., [Fitting, 1993; Kripke, 1980]. To describe the syntax and semantics more precisely we briefly introduce the modal extension of with unary modal operators 1, … , , and their duals 1, … , .
For the reason of space, we won’t go into other extensions such as epistemic extensions, temporal extensions, probabilistic extensions and so on.

4. Complexity of reasoning
4.1 Introduction
Complexity of reasoning has been one of the major issues in the development of
Description Logics (DL). This is because such logics are conceived [Brachman and
Levesque, 1984] as the formal specification of subsystems for representing knowledge, to be used in larger knowledge-based systems. Since using knowledge means also to derive implicit facts from the told ones, the implementation of derivation procedures should take into account the optimality of reasoning algorithms. The study of optimal algorithms starts from the elicitation of the computational complexity of the problem the algorithm should solve. Initially, studies about the complexity of reasoning problems in DLs were more focused on polynomial-time versus intractable (- or co-hard) problems. The idea was that a Knowledge Repre-sentation system based on a DL with polynomial-time inference problems would guarantee timely answers to the rest of the system. However, once very expressive DLs with exponential-time reasoning problems were implemented [Horrocks,1998b], it was recognized that knowledge bases of realistic size could be processedin reasonable time. This shifted most of the complexity analysis to DLs whose reasoning problems are ExpT-hard, or worse.
This chapter presents some lower bounds on the complexity of basic reasoning tasks in simple DLs. The reasoning services taken into account are: first, satisfiability and subsumption of concept expressions alone (no TBox), then the same reasoning services considering a TBox also, and in the last part of the chapter, instance checking w.r.t. an ABox.
We show in detail some reductions from problems that are hard for complexity
classes np, conp, PSpace, ExpTime, and from semidecidable problems to satisfiability / subsumption in various DLs. Then, we show how these reductions can be adapted to other DLs as well.
In several reductions, we use tableaux expansions to prove the correctness of the
reduction. Thus, a secondary aim in this chapter is to show how tableaux are useful not only to devise reasoning algorithms and complexity upper bounds. This is because tableaux untangle two different aspects of the computational complexity of reasoning in DLs:
 The first aspect is the structure of possible models of a concept. Such a structure is—in many DLs—a tree of individual names, linked by arcs labeled by roles. We consider such a tree an AND-tree, in the sense that all branches must be
followed to obtain a candidate model. Following [Schmidt-Schauß and Smolka,
1991], we call trace each branch of such a tree. Readers familiar with tableaux
terminology should observe that traces are not tableaux branches; in fact, they form a structure inside a single tableau branch.
The second aspect is the structure of proofs or refutations. Clearly, if a trace
contains an inconsistency—a clash in the terminology, the candidate models containing this trace can be discarded. When all candidate models are discarded this way, we obtain a proof of subsumption, or unsatisfiability. Hence, the structure of refutations is often best viewed as an OR-tree of traces containing clashes.
Here we chose to mark the nodes with AND, OR, considering a satisfiability problem; if either unsatisfiability or subsumption are considered, AND-OR labels should be exchanged.

4.2 Intuition: sources of complexity
The deterministic version of the calculus for in Chapter 2 can be seen as
exploring an AND-OR tree, where an AND-branching corresponds to the (independent) check of all successors of an individual, while an OR-branching corresponds to the different choices of application of a nondeterministic rule.
Realizing that, one can see that the exponential-time behavior of the calculuis due to two independent origins: The AND-branching, responsible for the exponential size of a single candidate model, and the OR-branching, responsible for the exponential number of different candidate models. We call these two different combinatorial explosions sources of complexity.

4.3 OR-branching
The OR-branching is due to the presence of disjunctive constructors, which make a concept satisfiable by more than one model. The obvious disjunctive constructor is
, hence is a good sublanguage to see this source of complexity. Recall that allows one to form concepts using negation of concept names, conjunction , disjunction , universal role quantification ., and unqualified existential role
quantification . This source of complexity is the same that makes propositional
satisfiability np-hard: in fact, satisfiability in ALU can be trivially proved -hard by rewriting propositional letters as atomic concepts, as , and as . Many proofs of conp-hardness of subsumption were found exploiting this source ofcomplexity ([Levesque and Brachman, 1987; Nebel, 1988]), by reducing an -hard problem to non-subsumption.
.
4.4 AND-branching

The AND-branching is more subtle. Its exponential behaviour is due to the interplay of qualified existential and universal quantifiers, hence is now a minimal sublanguage of with these features. As mentioned above one can see
the effects of this source of complexity by expanding the tableau {(x)}, when
is the following concept (whose pattern appears in many papers, from [Schmidt-Schauß and Smolka, 1991], to [Hemaspaandra, 1999])—see Chapter 2 of [1] for its general form:
P1.2. 3.11
P1.2. 3.12
P1.(2. 3.21
P2.3.22
2.(3.31
3.32)).
For each level l of nested quantifiers, we use a different role Pl (but using the same role R would produce the same results). The structure of the tableau for {()},
which is the candidate model for , is a binary tree of height 3: the nodes are the
individual names, the arcs are given by the Pl-successor relation, and the branches are the traces in the tableau.
Each trace ends with an individual that belongs to 1i, 2j ,3k, for i, j, k {1,2}.
Hence, a clash may be found independently in each trace, i.e., in each branch of the tree. To verify that this structure is indeed a model, one has to check ever AND-branch of it; and branches can be exponentially many in the nesting of quantifiers.
	This source of complexity causes an exponential number of possible refutations to be searched through (each refutation being a trace containing a clash).
This second source of complexity is not evident in propositional calculus, but asimilar problem appears in predicate calculus—where the interplay of existentialand universal quantifiers may lead to large models—and in Quantified Boolean Formulae.

Some results of complexity reasoning:
 Subsumption in is co-hard.
 Satisfiability in is -hard.
 Unsatisfiability in is -hard.
 Satisfiability and subsumption of concepts are -hard in ().
 Subsumption is -hard in

5. The conclusion and future focus.

In a word, we stress the simple history of DLs, the basic DL language, the extensions of DLS languages and the complexity of reasoning. This article is the foundation of my future work. After all, DLs are used to represent the knowledge of AI and the semantic web are based on them. I will go into the relationship of DLs and semantic web, especially to see how to handle with some problems, say, generic sentence in semantic web using DLs language.

Bibiliography

1. [Franz et al., 2007] Franz Baader, Diego Calvanese, Deborah L. McGuinness et al. The description logic handbook. Cambridge university press.
2. [Abiteboul and Kanellakis, 1989] Serge Abiteboul and Paris Kanellakis. Object identity as a query language primitive. In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 159–173, 1989.
3. [Abiteboul et al., 1995] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison Wesley Publ. Co., Reading, Massachussetts, 1995.
4. [Abiteboul et al., 1997] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L. Wiener. The Lorel query language for semistructured data. Int. J. on Digital Libraries, 1(1):68–88, 1997.
5. [Abiteboul et al., 2000] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web:
from Relations to Semistructured Data and XML. Morgan Kaufmann, Los Altos, 2000.
6. [Abiteboul, 1997] Serge Abiteboul. Querying semi-structured data. In Proc. of the 6th Int.Conf. on Database Theory (ICDT’97), pages 1–18, 1997.
	

